Mass inference#
The ASE calculator is not necessarily the most efficient way to run a lot of computations. It is better to do a “mass inference” using a command line utility. We illustrate how to do that here.
In this paper we computed about 10K different gold structures:
Boes, J. R., Groenenboom, M. C., Keith, J. A., & Kitchin, J. R. (2016). Neural network and Reaxff comparison for Au properties. Int. J. Quantum Chem., 116(13), 979–987. http://dx.doi.org/10.1002/qua.25115
You can retrieve the dataset below. In this notebook we learn how to do “mass inference” without an ASE calculator. You do this by creating a config.yml file, and running the main.py
command line utility.
! [ ! -f data.db ] && wget https://figshare.com/ndownloader/files/11948267 -O data.db
! ase db data.db
id|age|user |formula|calculator| energy|natoms| fmax|pbc| volume|charge| mass
1| 9y|jboes|Au55 |vasp |-170.717| 55|0.164|TTT|3304.114| 0.000|10833.161
2| 9y|jboes|Au55 |vasp |-170.717| 55|0.165|TTT|3304.114| 0.000|10833.161
3| 9y|jboes|Au55 |vasp |-170.718| 55|0.167|TTT|3304.114| 0.000|10833.161
4| 9y|jboes|Au55 |vasp |-170.721| 55|0.170|TTT|3304.114| 0.000|10833.161
5| 9y|jboes|Au55 |vasp |-170.732| 55|0.207|TTT|3304.114| 0.000|10833.161
6| 9y|jboes|Au55 |vasp |-170.762| 55|0.310|TTT|3304.114| 0.000|10833.161
7| 9y|jboes|Au55 |vasp |-170.816| 55|0.507|TTT|3304.114| 0.000|10833.161
8| 9y|jboes|Au55 |vasp |-170.905| 55|0.664|TTT|3304.114| 0.000|10833.161
9| 9y|jboes|Au55 |vasp |-171.034| 55|0.640|TTT|3304.114| 0.000|10833.161
10| 9y|jboes|Au55 |vasp |-171.149| 55|0.522|TTT|3304.114| 0.000|10833.161
11| 9y|jboes|Au55 |vasp |-171.270| 55|0.177|TTT|3304.114| 0.000|10833.161
12| 9y|jboes|Au55 |vasp |-171.282| 55|0.154|TTT|3304.114| 0.000|10833.161
13| 9y|jboes|Au55 |vasp |-171.279| 55|0.163|TTT|3304.114| 0.000|10833.161
14| 9y|jboes|Au55 |vasp |-171.268| 55|0.189|TTT|3304.114| 0.000|10833.161
15| 9y|jboes|Au55 |vasp |-171.243| 55|0.329|TTT|3304.114| 0.000|10833.161
16| 9y|jboes|Au55 |vasp |-170.717| 55|0.172|TTT|3304.114| 0.000|10833.161
17| 9y|jboes|Au55 |vasp |-170.717| 55|0.172|TTT|3304.114| 0.000|10833.161
18| 9y|jboes|Au55 |vasp |-170.717| 55|0.172|TTT|3304.114| 0.000|10833.161
19| 9y|jboes|Au55 |vasp |-170.167| 55|0.182|TTT|3304.114| 0.000|10833.161
20| 9y|jboes|Au55 |vasp |-170.167| 55|0.182|TTT|3304.114| 0.000|10833.161
Rows: 9972 (showing first 20)
Keys: config, group, identity, neural_energy, reax_energy, structure, surf, tag, train_set, volume
You have to choose a checkpoint to start with. The newer checkpoints may require too much memory for this environment.
%run ../ocp-tutorial.ipynb
list_checkpoints()
See https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md for more details.
CGCNN 200k
CGCNN 2M
CGCNN 20M
CGCNN All
DimeNet 200k
DimeNet 2M
SchNet 200k
SchNet 2M
SchNet 20M
SchNet All
DimeNet++ 200k
DimeNet++ 2M
DimeNet++ 20M
DimeNet++ All
SpinConv 2M
SpinConv All
GemNet-dT 2M
GemNet-dT All
PaiNN All
GemNet-OC 2M
GemNet-OC All
GemNet-OC All+MD
GemNet-OC-Large All+MD
SCN 2M
SCN-t4-b2 2M
SCN All+MD
eSCN-L4-M2-Lay12 2M
eSCN-L6-M2-Lay12 2M
eSCN-L6-M2-Lay12 All+MD
eSCN-L6-M3-Lay20 All+MD
EquiformerV2 (83M) 2M
EquiformerV2 (31M) All+MD
EquiformerV2 (153M) All+MD
GemNet-dT OC22
GemNet-OC OC22
GemNet-OC OC20+OC22
GemNet-OC trained with `enforce_max_neighbors_strictly=False` #467 OC20+OC22
GemNet-OC OC20->OC22
Copy one of these keys to get_checkpoint(key) to download it.
checkpoint = get_checkpoint('GemNet-dT OC22')
checkpoint
'gndt_oc22_all_s2ef.pt'
We have to update our configuration yml file with the dataset. It is necessary to specify the train and test set for some reason.
yml = generate_yml_config(checkpoint, 'config.yml',
delete=['cmd', 'logger', 'task', 'model_attributes',
'dataset', 'slurm'],
update={'amp': True,
'gpus': 1,
'task.dataset': 'ase_db',
'task.prediction_dtype': 'float32',
# Train data
'dataset.train.src': 'data.db',
'dataset.train.a2g_args.r_energy': False,
'dataset.train.a2g_args.r_forces': False,
'dataset.train.select_args.selection': 'natoms>5,xc=PBE',
# Test data - prediction only so no regression
'dataset.test.src': 'data.db',
'dataset.test.a2g_args.r_energy': False,
'dataset.test.a2g_args.r_forces': False,
'dataset.test.select_args.selection': 'natoms>5,xc=PBE',
})
yml
WARNING:root:Unable to identify OCP trainer, defaulting to `forces`. Specify the `trainer` argument into OCPCalculator if otherwise.
WARNING:root:Scale factor comment not found in model
PosixPath('/home/jovyan/shared-scratch/jkitchin/tutorial/ocp-tutorial/advanced/config.yml')
It is a good idea to redirect the output to a file. If the output gets too large here, the notebook may fail to save. Normally I would use a redirect like 2&>1
, but this does not work with the main.py method. An alternative here is to open a terminal and run it there.
%%capture inference
import time
t0 = time.time()
! python {ocp_main()} --mode predict --config-yml {yml} --checkpoint {checkpoint} --amp
print(f'Elapsed time = {time.time() - t0:1.1f} seconds')
! grep "Total time taken:" 'mass-inference.txt'
2023-07-30 17:41:22 (INFO): Total time taken: 69.08263731002808
with open('mass-inference.txt', 'wb') as f:
f.write(inference.stdout.encode('utf-8'))
The mass inference approach takes 1-2 minutes to run. See the output here.
results = ! grep " results_dir:" mass-inference.txt
d = results[0].split(':')[-1].strip()
import numpy as np
results = np.load(f'{d}/s2ef_predictions.npz', allow_pickle=True)
results.files
['ids', 'energy', 'forces', 'chunk_idx']
It is not obvious, but the data from mass inference is not in the same order. We have to get an id from the mass inference, and then “resort” the results so they are in the same order.
inds = np.array([int(r.split('_')[0]) for r in results['ids']])
sind = np.argsort(inds)
inds[sind]
array([ 0, 1, 2, ..., 8488, 8489, 8490])
To compare this with the results, we need to get the energy data from the ase db.
from ase.db import connect
db = connect('data.db')
energies = np.array([row.energy for row in db.select('natoms>5,xc=PBE')])
natoms = np.array([row.natoms for row in db.select('natoms>5,xc=PBE')])
Now, we can see the predictions. The are only ok here; that is not surprising, the data set has lots of Au configurations that have never been seen by this model. Fine-tuning would certainly help improve this.
import matplotlib.pyplot as plt
plt.plot(energies / natoms, results['energy'][sind] / natoms, 'b.')
plt.xlabel('DFT')
plt.ylabel('OCP');
The ASE calculator way#
We include this here just to show that:
We get the same results
That this is much slower.
from ocpmodels.common.relaxation.ase_utils import OCPCalculator
calc = OCPCalculator(checkpoint=os.path.expanduser(checkpoint), cpu=False)
WARNING:root:Unable to identify OCP trainer, defaulting to `forces`. Specify the `trainer` argument into OCPCalculator if otherwise.
amp: true
cmd:
checkpoint_dir: /home/jovyan/shared-scratch/jkitchin/tutorial/ocp-tutorial/advanced/checkpoints/2023-07-30-18-01-36
commit: 3973c79
identifier: ''
logs_dir: /home/jovyan/shared-scratch/jkitchin/tutorial/ocp-tutorial/advanced/logs/tensorboard/2023-07-30-18-01-36
print_every: 100
results_dir: /home/jovyan/shared-scratch/jkitchin/tutorial/ocp-tutorial/advanced/results/2023-07-30-18-01-36
seed: null
timestamp_id: 2023-07-30-18-01-36
dataset: null
gpus: 1
logger: tensorboard
model: gemnet_t
model_attributes:
activation: silu
cbf:
name: spherical_harmonics
cutoff: 6.0
direct_forces: true
emb_size_atom: 512
emb_size_bil_trip: 64
emb_size_cbf: 16
emb_size_edge: 512
emb_size_rbf: 16
emb_size_trip: 64
envelope:
exponent: 5
name: polynomial
extensive: true
max_neighbors: 50
num_after_skip: 2
num_atom: 3
num_before_skip: 1
num_blocks: 3
num_concat: 1
num_radial: 128
num_spherical: 7
otf_graph: true
output_init: HeOrthogonal
rbf:
name: gaussian
regress_forces: true
noddp: false
optim:
batch_size: 16
clip_grad_norm: 10
ema_decay: 0.999
energy_coefficient: 1
eval_batch_size: 16
eval_every: 5000
force_coefficient: 1
loss_energy: mae
loss_force: atomwisel2
lr_gamma: 0.8
lr_initial: 0.0005
lr_milestones:
- 64000
- 96000
- 128000
- 160000
- 192000
max_epochs: 80
num_workers: 2
optimizer: AdamW
optimizer_params:
amsgrad: true
warmup_steps: -1
slurm:
additional_parameters:
constraint: volta32gb
cpus_per_task: 3
folder: /checkpoint/abhshkdz/ocp_oct1_logs/57864354
gpus_per_node: 8
job_id: '57864354'
job_name: gndt_oc22_s2ef
mem: 480GB
nodes: 2
ntasks_per_node: 8
partition: ocp
time: 4320
task:
dataset: oc22_lmdb
eval_on_free_atoms: true
primary_metric: forces_mae
train_on_free_atoms: true
trainer: forces
WARNING:root:Scale factor comment not found in model
import time
from tqdm import tqdm
t0 = time.time()
OCP, DFT = [], []
for row in tqdm(db.select('natoms>5,xc=PBE')):
atoms = row.toatoms()
atoms.set_calculator(calc)
DFT += [row.energy / len(atoms)]
OCP += [atoms.get_potential_energy() / len(atoms)]
print(f'Elapsed time {time.time() - t0:1.1} seconds')
8491it [14:53, 9.51it/s]
Elapsed time 9e+02 seconds
This takes at least twice as long as the mass-inference approach above. It is conceptually simpler though, and does not require resorting.
plt.plot(DFT, OCP, 'b.')
plt.xlabel('DFT (eV/atom)')
plt.ylabel('OCP (eV/atom)');
Comparing ASE calculator and main.py#
The results should be the same.
It is worth noting the default precision of predictions is float16 with main.py, but with the ASE calculator the default precision is float32. Supposedly you can specify --task.prediction_dtype=float32
at the command line to or specify it in the config.yml like we do above, but as of the tutorial this does not resolve the issue.
As noted above (see also Issue 542), the ASE calculator and main.py use different precisions by default, which can lead to small differences.
np.mean(np.abs(results['energy'][sind] - OCP * natoms)) # MAE
0.047432115622423936
np.min(results['energy'][sind] - OCP * natoms), np.max(results['energy'][sind] - OCP * natoms)
(-2.0, 1.75)
plt.hist(results['energy'][sind] - OCP * natoms, bins=20);
Here we see many of the differences are very small. 0.0078125 = 1 / 128, and these errors strongly suggest some kind of mixed precision is responsible for these differences. It is an open issue to remove them and identify where the cause is.
(results['energy'][sind] - OCP * natoms)[0:400]
array([-0.0078125, 0. , 0. , 0. , 0. ,
0.0078125, 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.015625 , 0. , -0.015625 , 0. ,
0. , 0.015625 , 0. , 0. , -0.015625 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.015625 , 0. , 0. ,
0. , 0. , 0. , 0.015625 , 0. ,
-0.015625 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , -0.03125 , 0. , -0.015625 ,
0. , 0. , 0. , 0.015625 , -0.015625 ,
0.015625 , 0. , 0. , 0. , -0.015625 ,
0. , 0.015625 , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.015625 , -0.015625 , 0. , 0. , 0.015625 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
-0.015625 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.015625 , 0. , 0. , 0. , 0. ,
0. , 0.015625 , 0. , 0. , 0. ,
0. , -0.015625 , -0.015625 , 0. , 0.015625 ,
-0.015625 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , -0.015625 , 0. ,
-0.015625 , 0. , 0. , 0. , 0. ,
0.015625 , 0. , 0. , 0. , 0. ,
0. , -0.03125 , 0. , -0.015625 , -0.015625 ,
0.015625 , 0. , 0. , 0. , 0. ,
-0.015625 , 0. , 0. , 0.015625 , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.015625 , 0.015625 ,
0. , 0. , 0. , 0. , -0.015625 ,
0. , 0. , 0.015625 , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , -0.015625 , 0. , 0. , 0.015625 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , -0.015625 , 0. , 0. ,
0. , 0. , 0. , 0. , -0.015625 ,
0.015625 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
-0.015625 , 0.015625 , 0. , 0. , 0. ,
0. , -0.015625 , 0. , 0. , 0. ,
0. , 0. , -0.015625 , -0.015625 , 0. ,
0. , 0. , 0. , 0. , 0.015625 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.015625 ,
0. , 0. , 0. , -0.015625 , 0. ,
0. , 0. , -0.015625 , 0. , 0. ,
0. , -0.015625 , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
-0.015625 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.03125 , 0. , 0. ,
0.015625 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , -0.015625 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , -0.015625 , 0. , 0. ,
0. , 0. , -0.015625 , 0.03125 , 0. ,
-0.015625 , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.015625 , 0. ,
0. , -0.015625 , 0. , 0.015625 , 0. ,
0. , 0. , 0. , 0.015625 , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.015625 , 0. , 0.03125 , 0. , -0.015625 ,
0. , -0.03125 , 0. , 0. , 0. ,
-0.015625 , 0. , 0. , 0. , -0.03125 ,
0.015625 , 0. , 0.015625 , 0. , 0. ])